3.51 \(\int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx\)

Optimal. Leaf size=247 \[ -\frac {e^{3/2} (a-b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {e^{3/2} (a-b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}-\frac {e^{3/2} (a+b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}+\frac {e^{3/2} (a+b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d} \]

[Out]

-2/3*b*(e*cot(d*x+c))^(3/2)/d-1/2*(a+b)*e^(3/2)*arctan(1-2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d*2^(1/2)+1/2*(
a+b)*e^(3/2)*arctan(1+2^(1/2)*(e*cot(d*x+c))^(1/2)/e^(1/2))/d*2^(1/2)-1/4*(a-b)*e^(3/2)*ln(e^(1/2)+cot(d*x+c)*
e^(1/2)-2^(1/2)*(e*cot(d*x+c))^(1/2))/d*2^(1/2)+1/4*(a-b)*e^(3/2)*ln(e^(1/2)+cot(d*x+c)*e^(1/2)+2^(1/2)*(e*cot
(d*x+c))^(1/2))/d*2^(1/2)-2*a*e*(e*cot(d*x+c))^(1/2)/d

________________________________________________________________________________________

Rubi [A]  time = 0.21, antiderivative size = 247, normalized size of antiderivative = 1.00, number of steps used = 12, number of rules used = 8, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.348, Rules used = {3528, 3534, 1168, 1162, 617, 204, 1165, 628} \[ -\frac {e^{3/2} (a-b) \log \left (\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}+\frac {e^{3/2} (a-b) \log \left (\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}+\sqrt {e}\right )}{2 \sqrt {2} d}-\frac {e^{3/2} (a+b) \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}+\frac {e^{3/2} (a+b) \tan ^{-1}\left (\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}+1\right )}{\sqrt {2} d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d} \]

Antiderivative was successfully verified.

[In]

Int[(e*Cot[c + d*x])^(3/2)*(a + b*Cot[c + d*x]),x]

[Out]

-(((a + b)*e^(3/2)*ArcTan[1 - (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d)) + ((a + b)*e^(3/2)*ArcTan[
1 + (Sqrt[2]*Sqrt[e*Cot[c + d*x]])/Sqrt[e]])/(Sqrt[2]*d) - (2*a*e*Sqrt[e*Cot[c + d*x]])/d - (2*b*(e*Cot[c + d*
x])^(3/2))/(3*d) - ((a - b)*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] - Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqr
t[2]*d) + ((a - b)*e^(3/2)*Log[Sqrt[e] + Sqrt[e]*Cot[c + d*x] + Sqrt[2]*Sqrt[e*Cot[c + d*x]]])/(2*Sqrt[2]*d)

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 1168

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a*c, 2]}, Dist[(d*q + a*e)/(2*a*c),
 Int[(q + c*x^2)/(a + c*x^4), x], x] + Dist[(d*q - a*e)/(2*a*c), Int[(q - c*x^2)/(a + c*x^4), x], x]] /; FreeQ
[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0] && NeQ[c*d^2 - a*e^2, 0] && NegQ[-(a*c)]

Rule 3528

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]), x_Symbol] :> Simp[(d
*(a + b*Tan[e + f*x])^m)/(f*m), x] + Int[(a + b*Tan[e + f*x])^(m - 1)*Simp[a*c - b*d + (b*c + a*d)*Tan[e + f*x
], x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && NeQ[a^2 + b^2, 0] && GtQ[m, 0]

Rule 3534

Int[((c_) + (d_.)*tan[(e_.) + (f_.)*(x_)])/Sqrt[(b_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[2/f, Subst[I
nt[(b*c + d*x^2)/(b^2 + x^4), x], x, Sqrt[b*Tan[e + f*x]]], x] /; FreeQ[{b, c, d, e, f}, x] && NeQ[c^2 - d^2,
0] && NeQ[c^2 + d^2, 0]

Rubi steps

\begin {align*} \int (e \cot (c+d x))^{3/2} (a+b \cot (c+d x)) \, dx &=-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}+\int \sqrt {e \cot (c+d x)} (-b e+a e \cot (c+d x)) \, dx\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}+\int \frac {-a e^2-b e^2 \cot (c+d x)}{\sqrt {e \cot (c+d x)}} \, dx\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}+\frac {2 \operatorname {Subst}\left (\int \frac {a e^3+b e^2 x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}+\frac {\left ((a-b) e^2\right ) \operatorname {Subst}\left (\int \frac {e-x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}+\frac {\left ((a+b) e^2\right ) \operatorname {Subst}\left (\int \frac {e+x^2}{e^2+x^4} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{d}\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}-\frac {\left ((a-b) e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}+2 x}{-e-\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}-\frac {\left ((a-b) e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {\sqrt {2} \sqrt {e}-2 x}{-e+\sqrt {2} \sqrt {e} x-x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left ((a+b) e^2\right ) \operatorname {Subst}\left (\int \frac {1}{e-\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d}+\frac {\left ((a+b) e^2\right ) \operatorname {Subst}\left (\int \frac {1}{e+\sqrt {2} \sqrt {e} x+x^2} \, dx,x,\sqrt {e \cot (c+d x)}\right )}{2 d}\\ &=-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}-\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {\left ((a+b) e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {\left ((a+b) e^{3/2}\right ) \operatorname {Subst}\left (\int \frac {1}{-1-x^2} \, dx,x,1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}\\ &=-\frac {(a+b) e^{3/2} \tan ^{-1}\left (1-\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}+\frac {(a+b) e^{3/2} \tan ^{-1}\left (1+\frac {\sqrt {2} \sqrt {e \cot (c+d x)}}{\sqrt {e}}\right )}{\sqrt {2} d}-\frac {2 a e \sqrt {e \cot (c+d x)}}{d}-\frac {2 b (e \cot (c+d x))^{3/2}}{3 d}-\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)-\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}+\frac {(a-b) e^{3/2} \log \left (\sqrt {e}+\sqrt {e} \cot (c+d x)+\sqrt {2} \sqrt {e \cot (c+d x)}\right )}{2 \sqrt {2} d}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.13, size = 68, normalized size = 0.28 \[ -\frac {2 e \sqrt {e \cot (c+d x)} \left (3 a \, _2F_1\left (-\frac {1}{4},1;\frac {3}{4};-\tan ^2(c+d x)\right )+b \cot (c+d x) \, _2F_1\left (-\frac {3}{4},1;\frac {1}{4};-\tan ^2(c+d x)\right )\right )}{3 d} \]

Antiderivative was successfully verified.

[In]

Integrate[(e*Cot[c + d*x])^(3/2)*(a + b*Cot[c + d*x]),x]

[Out]

(-2*e*Sqrt[e*Cot[c + d*x]]*(b*Cot[c + d*x]*Hypergeometric2F1[-3/4, 1, 1/4, -Tan[c + d*x]^2] + 3*a*Hypergeometr
ic2F1[-1/4, 1, 3/4, -Tan[c + d*x]^2]))/(3*d)

________________________________________________________________________________________

fricas [F(-1)]  time = 0.00, size = 0, normalized size = 0.00 \[ \text {Timed out} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="fricas")

[Out]

Timed out

________________________________________________________________________________________

giac [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int {\left (b \cot \left (d x + c\right ) + a\right )} \left (e \cot \left (d x + c\right )\right )^{\frac {3}{2}}\,{d x} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="giac")

[Out]

integrate((b*cot(d*x + c) + a)*(e*cot(d*x + c))^(3/2), x)

________________________________________________________________________________________

maple [A]  time = 0.37, size = 363, normalized size = 1.47 \[ -\frac {2 b \left (e \cot \left (d x +c \right )\right )^{\frac {3}{2}}}{3 d}-\frac {2 a e \sqrt {e \cot \left (d x +c \right )}}{d}+\frac {a e \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d}+\frac {a e \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d}-\frac {a e \left (e^{2}\right )^{\frac {1}{4}} \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d}+\frac {e^{2} b \sqrt {2}\, \ln \left (\frac {e \cot \left (d x +c \right )-\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}{e \cot \left (d x +c \right )+\left (e^{2}\right )^{\frac {1}{4}} \sqrt {e \cot \left (d x +c \right )}\, \sqrt {2}+\sqrt {e^{2}}}\right )}{4 d \left (e^{2}\right )^{\frac {1}{4}}}+\frac {e^{2} b \sqrt {2}\, \arctan \left (\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (e^{2}\right )^{\frac {1}{4}}}-\frac {e^{2} b \sqrt {2}\, \arctan \left (-\frac {\sqrt {2}\, \sqrt {e \cot \left (d x +c \right )}}{\left (e^{2}\right )^{\frac {1}{4}}}+1\right )}{2 d \left (e^{2}\right )^{\frac {1}{4}}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x)

[Out]

-2/3*b*(e*cot(d*x+c))^(3/2)/d-2*a*e*(e*cot(d*x+c))^(1/2)/d+1/4*a/d*e*(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)+(e^2
)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)
^(1/2)))+1/2*a/d*e*(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/2*a/d*e*(e^2)^(1/4
)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)+1/4/d*e^2*b/(e^2)^(1/4)*2^(1/2)*ln((e*cot(d*x+c)
-(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+(e^2)^(1/2))/(e*cot(d*x+c)+(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)*2^(1/2)+
(e^2)^(1/2)))+1/2/d*e^2*b/(e^2)^(1/4)*2^(1/2)*arctan(2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)-1/2/d*e^2*b/(
e^2)^(1/4)*2^(1/2)*arctan(-2^(1/2)/(e^2)^(1/4)*(e*cot(d*x+c))^(1/2)+1)

________________________________________________________________________________________

maxima [A]  time = 0.85, size = 221, normalized size = 0.89 \[ \frac {{\left (3 \, {\left (\frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} + 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {2 \, \sqrt {2} {\left (a + b\right )} \arctan \left (-\frac {\sqrt {2} {\left (\sqrt {2} \sqrt {e} - 2 \, \sqrt {\frac {e}{\tan \left (d x + c\right )}}\right )}}{2 \, \sqrt {e}}\right )}{\sqrt {e}} + \frac {\sqrt {2} {\left (a - b\right )} \log \left (\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}} - \frac {\sqrt {2} {\left (a - b\right )} \log \left (-\sqrt {2} \sqrt {e} \sqrt {\frac {e}{\tan \left (d x + c\right )}} + e + \frac {e}{\tan \left (d x + c\right )}\right )}{\sqrt {e}}\right )} e - \frac {8 \, {\left (3 \, a e \sqrt {\frac {e}{\tan \left (d x + c\right )}} + b \left (\frac {e}{\tan \left (d x + c\right )}\right )^{\frac {3}{2}}\right )}}{e}\right )} e}{12 \, d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))^(3/2)*(a+b*cot(d*x+c)),x, algorithm="maxima")

[Out]

1/12*(3*(2*sqrt(2)*(a + b)*arctan(1/2*sqrt(2)*(sqrt(2)*sqrt(e) + 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) + 2*
sqrt(2)*(a + b)*arctan(-1/2*sqrt(2)*(sqrt(2)*sqrt(e) - 2*sqrt(e/tan(d*x + c)))/sqrt(e))/sqrt(e) + sqrt(2)*(a -
 b)*log(sqrt(2)*sqrt(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e) - sqrt(2)*(a - b)*log(-sqrt(2)*sqrt
(e)*sqrt(e/tan(d*x + c)) + e + e/tan(d*x + c))/sqrt(e))*e - 8*(3*a*e*sqrt(e/tan(d*x + c)) + b*(e/tan(d*x + c))
^(3/2))/e)*e/d

________________________________________________________________________________________

mupad [B]  time = 1.40, size = 153, normalized size = 0.62 \[ \frac {{\left (-1\right )}^{1/4}\,b\,e^{3/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d}-\frac {2\,a\,e\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{d}-\frac {2\,b\,{\left (e\,\mathrm {cot}\left (c+d\,x\right )\right )}^{3/2}}{3\,d}-\frac {{\left (-1\right )}^{1/4}\,b\,e^{3/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atan}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d}-\frac {{\left (-1\right )}^{1/4}\,a\,e^{3/2}\,\mathrm {atanh}\left (\frac {{\left (-1\right )}^{1/4}\,\sqrt {e\,\mathrm {cot}\left (c+d\,x\right )}}{\sqrt {e}}\right )\,1{}\mathrm {i}}{d} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((e*cot(c + d*x))^(3/2)*(a + b*cot(c + d*x)),x)

[Out]

((-1)^(1/4)*b*e^(3/2)*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/d - (2*a*e*(e*cot(c + d*x))^(1/2))/d
- ((-1)^(1/4)*a*e^(3/2)*atan(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - ((-1)^(1/4)*a*e^(3/2)*atanh(
((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2))*1i)/d - (2*b*(e*cot(c + d*x))^(3/2))/(3*d) - ((-1)^(1/4)*b*e^(3/2
)*atanh(((-1)^(1/4)*(e*cot(c + d*x))^(1/2))/e^(1/2)))/d

________________________________________________________________________________________

sympy [F]  time = 0.00, size = 0, normalized size = 0.00 \[ \int \left (e \cot {\left (c + d x \right )}\right )^{\frac {3}{2}} \left (a + b \cot {\left (c + d x \right )}\right )\, dx \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((e*cot(d*x+c))**(3/2)*(a+b*cot(d*x+c)),x)

[Out]

Integral((e*cot(c + d*x))**(3/2)*(a + b*cot(c + d*x)), x)

________________________________________________________________________________________